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ESSENTIAL LIMITATIONS TO SIGNAL DETECTION AND ESTIMATION:
AN APPLICATION TO THE ARCTIC UNDER ICE ENVIRONMENTAL NOISE PROBLEM

Roger F. Dwyer

Naval Underwater Systems Center
New London, Connecticut 06320

ABSTRACT

A method to remove narrowband interference in the frequency domain is
considered. It consists of first transforming the data into the frequency
domain by an FFT, passing the transformed data through an ideal non-linearity,
and then transforming the data back into the time domain by an IFFT. The
essential mathematical details of the method are given and an error criterion
is defined which measures the effectiveness of the technique.

INTRODUCTION

It has been observed that Arctic under ice noise is at times composed of
narrowband components'.ij The narrowband noise is primarily due to rubbing
ice flows but possibly acoustic dispersion contributes to this phenomenon.
This type of interference can significantly degrade the performance of systems
which estimate autocorrelation functions to obtain bearing and range
information. The data were collected as part of the 1980 Arctic Ocean
experiments,42]. A typical sample of Arctic under ice narrowband interference
is shown in Figure 1. The data below 2 kHz is broadband noise. But a
narrowband component is present in the figure above 2 kHz which lasts for 12.8
second).---'

*Many segments of Arctic under ice data contained these highly dynamic
narrowband components as shown in Figure 1. The statistical behavior of the
dynamic narrowband frequency components were measured by first transforming
the data into the frequency domain using a fast Fourier transform (FFT). Then
the Kurtosis was estimated for each real and imaginary part of each frequency
component over the band for a group of consecutive FFT segments. This
procedure is called frequency domain Kurtosis (FDK) estimation [31 Thus, the
FDK estimates the distribution over a time interval consisting of mhny FFT
segments for each real and imaginary frequency component. Many of the Arctic
data segments showed non-Gaussian components in the frequency domain based on
the FDK estimate. This was due mainly to the highly dynamic nature of the
narrowband ice components. Therefore, the FDK is a method whereby the desired
signal can be distinguished from the unwanted ice sound.

Once the narrowband interference is identified it ca'n be removed by
passing the data of that frequency component through a non-linearity [11. The
output data with the interferring component removed may then be transformed
back into the time domain for further processing. For example, the
autocorrelation function of the desired signal may be estimated free of the
interferring narrowband noise. Or, for two channels, the cross-correlation
function may be estimated after both channels are processed through the
non-linearity in the frequency domain. The smoothed coherence transform



(SCOT) introduced by Carter, Nuttall, and Cable [4], is a technique which
improves time delay estimation between broadband correlated signals in the
presence of strong narrowband interference. The SCOT utilizes a frequency
domain whitening process of the cross-spectrum. The SCOT processed data is
then transformed into the time domain so that time delay can be estimated.
Hassab and Baucher [5] have utilized other window functions to improve SCOT
performance for signal and noise with smooth spectra.

In contrast to the SCOT and its generalizations, the method of this paper
is applied to one channel, or in multichannel cases, to each channel
separately. Also, the narrowband interference is removed by passing the
frequency domain data through a non-linearity in contrast to whitening.
Therefore, only those frequency components that are deemed interference by the
FDK estimate are removed. In addition, the optimum non-linearity can be
derived from a likelihood ratio formulation under the assumption of
independent observations [1].

Time domain techniques may also be employed. For example, data adaptive
signal estimation by singular decomposition has been proposed and evaluated in
reference 6, which could be used to estimate and remove the interferring
components.

In the next section an ideal non-linearity (INL) will be utilized so that 4

the essential mathematical features of the method can be discussed
conveniently. However, the INL is similar to the non-linearity discussed in
reference 1.

It will also be clear from the following development that the method can
also be applied to the spatial domain as well as the frequency domain. But,
tne discussion will only be concerned with the frequency domain.

THE IDEAL NON-LINEARITY

Let x(i), i = 0, 1, 2, ..., N - 1, represent the real discrete data. The
discrete Fourier transform (OFT) of x(i) is

N - 1
X(k) =4 *T 0 w(i) x(i) exp(-j2wki/N)

where, =4 1, and k = 0, 1, 2, ..., N - 1.

For simplicity, the window weights are set equal to one, i.e., w(i) = 1
for all i.

It can be shown that the components are related by the relationship,
X(k) = X*(N - k), for k = 0, 1, 2, ..., N, with X(O) = X(N), since X(O) and
X(N) are real. The asterisk represents complex conjugate. p

If the input data are an additive mixture of signal, noise, and
interference of the form,

x(i) - s(i) + n(i) + I(i),
p

p



then the components in the frequency domain are,

X(k) = S(k) + N(k) + I(k).

The signal, s(i), which is the information bearing component of the
received data, is corrupted by noise, n(i), and interference I(i).

If the interference is narrowband and within the bandwidth of the signal
it will generally degrade the autocorrelation estimate of the signal. The
approach that will be considered to rectify this problem is to remove the
interferring components from the signal by using an INL.

The INL is defined, for complex values, as

X(k) = , if k = kg + md

X(k) =Q, if k = N - (kg + md)

X(k) = X(k), otherwise,

where, m = 0, 1, 2, ..., I - 1, d = integer constant, and 0 < kg + md < N/2,
and N/2 < N - (kg + md) < N. Here, the symbol, ., means thal both reaT and
imaginary parts are set to zero.

The interferring frequencies start at kg and extend to kg + (I - 1)d. In
order to include interference that may be periodic in the frequency domain the
parameter, d, will not equal one, i.e., d j 1.

For example 60 Hz interference and its harmonically related frequencies
are sometimes present in systems. In this case d may represent the number of
frequency bins between components.

Once the inteferring components have been identified and removed by the
INL the output is given by

I-I

Y(k) - X(k) X(k) 16[k - (kg + md)]

m=0

+ 6[k -N + (kg + md)] } , /

where the Kronecker delta function 6(k-p) is equal to one when k=p and is .,

equal to zero otherwise.

The inverse DFT of Y(k) is

y(i) = s(i) + n(i) + 1(i) -IR)

where,
I-1

IR(i) =vf i' X(kg + md) exp[j2wi (kg + md)/N)

mk

+ X*(kg + rod) exp[-j2i (kg mod)/N)]}

. . . . . . .. .. . . . ..... . . . . .. .. ... . . .. . . . .. .. .. . . .. .. . |



The function IR(i) can be interpreted as an inverse Fourier transform
over the frequencies, kg through kg + (I - 1)d, which are removed from the
input x(i).

Therefore, all the frequencies contained in IR(i) will be removed from
x(i). If the signal is separated, in frequency space, from IR(i), then only
the interference and those frequencies of the noise contained in IR(i) will
be removed. However, if part of the signal is contained in the interferring
frequency space it will also be removed. This represents a disadvantage of
the method. In some applications the partial loss of signal may be tolerated
if the overall performance is improved.

The effectiveness of the INL may be measured from the error equation

Error = s( ) IR(i) s

where, s(i), n(i), and I(i) are assumed mutually independent and zero mean

processes.

EXAMPLES

1. Consider a case where the data are two pure sinusoids at two different
frequencies. In addition, for the FFT results, assume the frequencies are
centered in the frequency bins. One sinusoid represents the signal and the
other interference. Therefore, the error will be zero. Figure 2 shows the
sum of the two sinusoids in the top graph. The interference is obscuring the
signal in the time domain. The bottom graph shows the signal after the
interference was removed by the method of using a non-linearity in the
frequency domain.

2. The last example concerns measuring the autocorrelation function of a
broadband Gaussian signal. However, a strong additive sinusoid is present in
the data. Figure 3 shows the time history of the additive broadband signal
and interference in the top graph. The bottom graph represents the time
history after the sinusoid has been removed. Since the signal was not
completely disjoint from the interference, in frequency space, part of the
signal corresponding to the interferring frequency was also removed.
Therefore, the error was not zero but, nevertheless, small. The benefit from
the method is obvious from the figure. This result is probably appreciated
more by observing the difference in the autocorrelation function estimate.
Figure 4 represents the autocorrelation function estimate of signal and
interference in the top graph. The interference has completely dominated the
estimate. The bottom graph shows the same estimate after the interference has
been removed.

SUMMARY

An ideal non-linearity was applied in the frequency domain to remove
interference from a desired signal. The essential mathematical details of
this concept were presented. An error function relationship was defined to
measure the effectiveness of the INL concept. Two examples were give to
demonsrate the method.
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